Mass segregation in young star clusters

Christoph Olczak
ARI & MPIA, Heidelberg
NAOC, Beijing

Rainer Spurzem, Xiaoying Pang (NAOC, KIAA Beijing; ARI Heidelberg)
Elena Schilbach, Siegfried Röser, Andreas Ernst (ARI Heidelberg)
Thomas Henning, Bertrand Goldmann, Wolfgang Brandner (MPIA Heidelberg)
Andrea Stolte, Maryam Habibi (AlfA Bonn)

Johanna Ziegel (IMSV Bern)
Thordis L. Thorarinsdottir (NR Oslo)
Giacomo Beccari (ESO Garching)
Stefan Harfst (TU Berlin)
Outline

1 Mass Segregation
 • Introduction
 • Methodology
 • Understanding the evolution of mass segregation
 • Evaluating mass segregation in real star clusters

2 Summary
What is mass segregation?

A statistically significant spatial concentration of a sample of stars of a given mass range compared to the entire population.

Note potential observational bias

Observations usually only provide 2-dimensional spatial information.
What is the origin of mass segregation?

1. PRIMORDIAL
 - star formation

2. DYNAMICAL
 - two-body relaxation
What is the origin of mass segregation?

Primordial

- Star formation

Note: so far there exists no observational evidence for *primordial* mass segregation.
What is the origin of mass segregation?

1. **PRIMORDIAL**
 - star formation

2. **DYNAMICAL**
 - two-body relaxation (energy equipartition)

Relaxation time (Spitzer & Hart, 1971):

\[
t_{\text{rel}} = 0.14 \frac{N}{\ln(0.4N)} \sqrt{\frac{R_{\text{hm}}}{GM}} \approx 0.1 \frac{N}{\ln N} t_{\text{cross}}
\]
Mass Segregation

Introduction

What is the origin of mass segregation?

1. **PRIMORDIAL**
 - star formation

2. **DYNAMICAL**
 - two-body relaxation (→ energy equipartition)

Relaxation time (Spitzer & Hart, 1971):

\[t_{\text{rel}} = 0.14 \frac{N}{\ln(0.4N)} \sqrt{\frac{R_{hm}}{GM}} \approx 0.1 \frac{N}{\ln N} t_{\text{cross}} \]

Spitzer (1969): energy equipartition of self-gravitating systems with two mass groups (where \(m_2 \gg m_1 \), \(\sum m_2 = M_2 \ll M_{C_1} = \rho_{C_1} r_{C_1}^3 \); \(C_i \) denotes the core of group \(i \))

\[t_{\text{eq}} = \frac{(\sigma_1^2 + \sigma_2^2)^{3/2}}{8\sqrt{6\pi} \rho_{C_1} G^2 m_2 \ln N_1} = \frac{3\sqrt{\pi}}{16} \left(1 + \frac{\sigma_2^2}{\sigma_1^2}\right)^{3/2} \frac{m_1}{m_2} t_{\text{rel},1} \approx \frac{m_1}{m_2} \sigma_1 = \sigma_2 \frac{m_1}{m_2} t_{\text{rel},1} \]
What is the origin of mass segregation?

1. PRIMORDIAL
 - star formation

2. DYNAMICAL
 - two-body relaxation (→ energy equipartition)

Relaxation time (Spitzer & Hart, 1971):

\[
t_{\text{rel}} = 0.14 \frac{N}{\ln(0.4N)} \sqrt{\frac{R_{\text{hm}}}{GM}} \approx 0.1 \frac{N}{\ln N} t_{\text{cross}}
\]

Spitzer (1969): energy equipartition of self-gravitating systems with two mass groups (where \(m_2 \gg m_1\), \(\sum m_2 = M_2 \ll M_{C_1} = \rho_{C_1} r_{C_1}^3\); \(C_i\) denotes the core of group \(i\))

\[
t_{\text{eq}} = \frac{(\sigma_1^2 + \sigma_2^2)^{\frac{3}{2}}}{8 \sqrt{6\pi} \rho_{C_1} G^2 m_2 \ln N_1} = \frac{3\sqrt{\pi}}{16} \left(1 + \frac{\sigma_2^2}{\sigma_1^2}\right)^{\frac{3}{2}} \frac{m_1}{m_2} t_{\text{rel},1} \approx \frac{m_1}{m_2} t_{\text{rel},1}
\]

In young massive star clusters (\(N \approx 10^4\)):

\[
\begin{align*}
 m_2 &\approx \langle m_{\text{high}} \rangle \approx 50 \, M_\odot \\
 m_1 &\approx \langle m_{\text{low}} \rangle \approx 0.5 \, M_\odot
\end{align*}
\]

\(\Rightarrow t_{\text{eq}} \approx 10^{-2} t_{\text{rel},1} \approx t_{\text{cross}} < 1 \, \text{Myr (!)}\)
What is the origin of mass segregation?

1. **Primordial**
 - star formation

2. **Dynamical**
 - two-body relaxation (→ energy equipartition)

Mass segregation is a powerful diagnostic tool of self-gravitating stellar systems

- imprint of
 1. formation process ("primordial") and
 2. dynamical evolution

- only three diagnostic parameters required
 1. physical age t_*
 2. equipartition time t_{eq}

$$\Rightarrow \text{degree of dynamical mass segregation } \mu_{\text{dyn}} = \mu(t_*, t_{eq})$$

3. apparent degree of mass segregation $\mu_{\text{obs}} = \mu(x, y, ...)$

$$\Rightarrow \begin{cases}
\text{primordial mass segregation} & \text{if } \mu_{\text{obs}} \gg \mu_{\text{dyn}} \\
\text{purely dynamical mass segregation} & \text{if } \mu_{\text{obs}} \approx \mu_{\text{dyn}}
\end{cases}$$
A new efficient measure of mass segregation

Goal

Efficient measure of mass segregation μ for both observational and numerical data:

- geometrically independent,
- independence of quantitative mass measurement,
- numerical robustness, and
- simple, intuitive measure.

\Rightarrow

Minimum Spanning Tree (MST)

Definition

$\text{MST} \equiv \text{shortest connecting graph } G = (V, E) \text{ of all vertices } v_i \in V \text{ without closed loops, where }$

$V := \{v_1, \ldots, v_N\} \subset \mathbb{R}^2 \text{ "vertices" }$

$E := \{\{v_i, v_j\} | v_i, v_j \in V\} \text{ "edges" }$
A new efficient measure of mass segregation

Goal
Efficient measure of mass segregation μ for both observational and numerical data:
- geometrically independent,
- independence of quantitative mass measurement,
- numerical robustness, and
- simple, intuitive measure.

\Rightarrow Minimum Spanning Tree (MST)

Definition
$\text{MST} \equiv \text{shortest connecting graph } G = (V, E) \text{ of all vertices } v_i \in V \text{ without closed loops,}$

where

$V := \{v_1, \ldots, v_N\} \subset \mathbb{R}^2$ \hspace{1cm} “vertices”

and

$E := \{\{v_i, v_j\} \mid v_i, v_j \in V\}$ \hspace{1cm} “edges”
Measuring mass segregation via the MST

Construction

1. Construct sub-MST, i.e. shortest connecting subgraph $G' = (V', E')$ of $n < N$ stars, where $V' := \{v'_1, ..., v'_n\} \subset V$, $E' := \{\{v'_i, v'_j\} \mid v'_i, v'_j \in V'\}$.

2. Assign to each edge $e = \{v'_i, v'_j\} \in E'$ the weight $w_e \equiv w_{ij} \equiv ||v'_i - v'_j||$ ("edge length").
Measuring mass segregation via the MST

Construction

1. **Construct sub-MST**: Construct a sub-MST, i.e., the shortest connecting subgraph $G' = (V', E')$ of $n < N$ stars, where $V' := \{v'_1, \ldots, v'_n\} \subset V$, $E' := \{\{v'_i, v'_j\} | v'_i, v'_j \in V'\}$.

2. **Assign edge weights**: Assign to each edge $e = \{v'_i, v'_j\} \in E'$ the weight $w_e \equiv w_{ij} \equiv ||v'_i - v'_j||$ ("edge length").

Quantifying mass segregation

1. **Define measure μ** of the sub-MST:

2. **Calculate μ of the n most massive stars**:

3. **Calculate $\bar{\mu}$, $\Delta \mu$ of k sets of n random stars**:

4. **Normalize μ (⇒ signature if $\mu > 1$)**:

5. **Normalize $\Delta \mu$ (⇒ significance $\frac{\mu - 1}{\Delta \mu}$)**:

Allison et al. (2009)

\[
\lambda = \sum_{e \in E'} w_e
\]

\[
\lambda_{\text{MST}}^{\text{mass}}
\]

\[
\langle \lambda_{\text{MST}}^{\text{ref}} \rangle, \Delta \lambda_{\text{MST}}^{\text{ref}}
\]

\[
\lambda_{\text{MST}} = \frac{\langle \lambda_{\text{MST}}^{\text{ref}} \rangle}{\lambda_{\text{MST}}^{\text{mass}}}
\]

\[
\Delta \lambda_{\text{MST}} = \frac{\Delta \lambda_{\text{MST}}^{\text{ref}}}{\lambda_{\text{MST}}^{\text{mass}}}
\]
Measuring mass segregation via the MST

Construction

1. Construct sub-MST, i.e. shortest connecting subgraph \(G' = (V', E') \) of \(n < N \) stars, where \(V' := \{v'_1, ..., v'_n\} \subset V, E' := \{\{v'_i, v'_j\} | v'_i, v'_j \in V'\} \).

2. Assign to each edge \(e = \{v'_i, v'_j\} \in E' \) the weight \(w_e \equiv w_{ij} \equiv \|v'_i - v'_j\| \) (“edge length”).

Quantifying mass segregation

1. Define a measure \(\mu \) of the sub-MST:

2. Calculate \(\mu \) of the \(n \) most massive stars:

3. Calculate \(\bar{\mu}, \Delta \mu \) of \(k \) sets of \(n \) random stars:

4. Normalize \(\mu \) (\(\Rightarrow \) signature if \(\mu > 1 \)):

5. Normalize \(\Delta \mu \) (\(\Rightarrow \) significance \(\frac{\mu - 1}{\Delta \mu} \)):

Use the *geometric mean* \(\Lambda_{\text{MST}} \) of the edges rather than their sum \(\Lambda_{\text{MST}} \).

\(\Rightarrow \) Acts as an intermediate pass that damps contributions from extreme edge lengths.

Allison et al. (2009)

\[
\lambda = \sum_{e \in E'} w_e
\]

\[
\lambda_{\text{MST}}^{\text{mass}} = \langle \lambda_{\text{ref}}^{\text{MST}} \rangle, \quad \Delta \lambda_{\text{MST}}^{\text{ref}}
\]

\[
\Lambda_{\text{MST}} = \frac{\langle \lambda_{\text{ref}}^{\text{MST}} \rangle}{\lambda_{\text{MST}}^{\text{mass}}}
\]

\[
\Delta \Lambda_{\text{MST}} = \frac{\Delta \lambda_{\text{ref}}^{\text{MST}}}{\lambda_{\text{MST}}^{\text{mass}}}
\]

Olczak et al. (2011)

\[
\gamma = \sqrt[n]{\prod_{e \in E'} w_e}
\]

\[
\gamma_{\text{MST}}^{\text{mass}} = \langle \gamma_{\text{ref}}^{\text{MST}} \rangle, \quad \Delta \gamma_{\text{MST}}^{\text{ref}}
\]

\[
\Gamma_{\text{MST}} = \frac{\langle \gamma_{\text{ref}}^{\text{MST}} \rangle}{\gamma_{\text{MST}}^{\text{mass}}}
\]

\[
\Delta \Gamma_{\text{MST}} = \frac{\Delta \gamma_{\text{ref}}^{\text{MST}}}{\gamma_{\text{MST}}^{\text{mass}}}
\]
Comparison of Γ_{MST} and Λ_{MST} via model star clusters

Star cluster with 10k single stars and Kroupa (2001) mass function in the range $0.08 - 150 \, M_\odot$. Initial mass segregation parametrized via $S = 0.3 \in [0, 1)$ following Šubr et al. (2008).

groups of mass ordered stars: 1-50, 51-100, 101-200, 201-500, 501-1000, 1001-2000, 2001-5000, and 5001-10000
The evolution of mass segregation in model star clusters

Fixed parameters

- **no initial mass segregation**
- $N = 10k$ (centre-of-mass particles)
- $R_{hm} = 1$ pc
- IMF: Kroupa (2001) with $m \in [0.08, 150] M_\odot$
- MST groups: 1-5, 6-10, 11-20, 21-50, 51-500, 501-5000 most massive stars

Variable parameters

- King model: $W_0 = \{3, 12\}$
- stellar evolution: $SE = \{on, off\}$
- virial ratio: $Q = \{0.1, 0.5\}$
- binary fraction: $b_f = \{0.0, 0.1, 1.0\}$
The effect of the density distribution:

\[N = 10k, \ W_0 = 12, \ Q = 0.5, \ b_f = 0.0, \ SE \]

\[N = 10k, \ W_0 = 03, \ Q = 0.5, \ b_f = 0.0, \ SE \]
Mass Segregation

Understanding the evolution of mass segregation

The effect of the density distribution:

\(N = 10k, W_0 = 12, Q = 0.5, b_f = 0.0, SE \)

The effect of stellar evolution:

\(N = 10k, W_0 = 12, Q = 0.5, b_f = 0.0, SE \)
Mass Segregation
Understanding the evolution of mass segregation

The effect of the density distribution:

\[N = 10k, \ W_0 = 12, \ Q = 0.5, \ b_f = 0.0, \ SE \]

\[N = 10k, \ W_0 = 03, \ Q = 0.5, \ b_f = 0.0, \ SE \]

The effect of stellar evolution:

\[N = 10k, \ W_0 = 12, \ Q = 0.5, \ b_f = 0.0, \ SE \]
The effect of the initial virial ratio (equilibrium vs. cold initial state):

\[N = 10k, \ W_0 = 12, \ Q = 0.5, \ b_f = 0.0, \ SE \]

\[N = 10k, \ W_0 = 12, \ Q = 0.1, \ b_f = 0.0, \ SE \]

\[N = 10k, \ W_0 = 03, \ Q = 0.5, \ b_f = 0.0, \ SE \]

\[N = 10k, \ W_0 = 03, \ Q = 0.1, \ b_f = 0.0, \ SE \]
The effect of binaries:

\[N = 10k, \ W_0 = 12, \ Q = 0.5, \ \ b_f = 0.0, \ SE \]

\[N = 10k, \ W_0 = 12, \ Q = 0.5, \ \ b_f = 0.1, \ SE \]
The effect of binaries:

\[N = 10k, W_0 = 12, Q = 0.5, b_f = 0.0, SE \]

\[N = 10k, W_0 = 12, Q = 0.5, b_f = 0.1, SE \]
Mass Segregation

Understanding the evolution of mass segregation

The effect of binaries:

\[N = 10k, W_0 = 12, Q = 0.5, b_f = 0.0, SE \]

\[N = 10k, W_0 = 12, Q = 0.5, b_f = 0.1, SE \]

\[N = 10k, W_0 = 12, Q = 0.5, b_f = 1.0, SE, p \]

\[N = 10k, W_0 = 12, Q = 0.5, b_f = 0.1, SE, p \]
The Arches cluster: one of the densest and most massive young Galactic star clusters

- age: $t \approx 2.5$ Myr
- O-stars: $N \approx 150 \ (m_* > 20 \, M_\odot)$
- mass: $M \gtrsim 10^4 \, M_\odot \ (\rho \gtrsim 10^5 \, M_\odot \, \text{pc}^{-3})$

Espinoza et al. (2009)
The **Arches cluster**: one of the densest and most massive young Galactic star clusters

- age: \(t \approx 2.5 \text{ Myr} \)
- O-stars: \(N \approx 150 \left(m_* > 20 M_\odot \right) \)
- mass: \(M \gtrsim 10^4 M_\odot \left(\rho \gtrsim 10^5 M_\odot \text{ pc}^{-3} \right) \)

Models based on parameters estimated by Harfst et al. (2010) and evolved with **NBODY6GPU** (Aarseth, 2003; Nitadori & Aarseth, 2012).

Two best-fitting (rotating) King models with \(W_0 = 3 \) and 'standard' IMF from Kroupa (2001):

1. **non-rotating** \(M_N \): \(\omega_0 = 0.0 \), \(N_0 = 66k \)
 \[M_0 = (4.32 \pm 0.06) \times 10^4 M_\odot \]
2. **rotating** \(M_R \): \(\omega_0 = 1.5 \), \(N_0 = 60k \)
 \[M_0 = (3.87 \pm 0.07) \times 10^4 M_\odot \]

→ Note: maximum \(\omega_0 \) for stable rotation.
Energy equipartition drives strong mass segregation of the 100 most massive stars.

Initial

![Initial configuration](image)

$t = 2 \text{ Myr}$

![Configuration at $t = 2 \text{ Myr}$](image)
Energy equipartition drives strong mass segregation of the 100 most massive stars.

Mass segregation measure Γ_{MST} (Olczak et al., 2011).
Mass-dependent velocity dispersion in the cluster core as observed by Clarkson et al. (2012).
Mass-dependent velocity dispersion in the cluster core as observed by Clarkson et al. (2012).

No evidence for primordial origin of mass segregation.
Mass segregation is a powerful diagnostic tool

Information about

- star formation process ("primordial mass segregation")
- dynamical evolution

Measuring mass segregation

- Analytic estimates: use t_{eq} rather than t_{rel}!
- Efficient numerical measure: Γ_{MST} (= Minimum Spanning Tree + geometrical mean)

Mass segregation in (young) star clusters

- Cluster parameters have a strong impact on the evolution of mass segregation:
 \rightarrow speed-up for high concentrations and subvirial initial conditions.
- Stellar evolution strongly affects the signature of mass segregation in young clusters.
- Mass segregation in the Arches cluster in good agreement with dynamical models in 4-dim.
 \rightarrow No evidence for primordial mass segregation so far.

